RFM模型是指什么?RFM模型的具体内容、应用及意义
一、RFM模型是指什么
RFM模型是Recency、Frequency、Monetary三个英文单词的缩写,是衡量客户价值和客户创造利益能力的重要工具和手段。在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。
R→Recency 最近一次消费
F→Frequency 消费频率
M→Monetary 消费金额
二、RFM模型的内容
1、最近一次消费 (Recency)
(1)、定义
最近一次消费意指上一次购买的时候——顾客上一次是几时来店里、上一次根据哪本邮购目录购买东西、什么时候买的车,或在你的超市买早餐最近的一次是什么时候。
理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。营销人员若想业绩有所成长,只能靠偷取竞争对手的市场占有率,而如果要密切地注意消费者的购买行为,那么最近的一次消费就是营销人员第一个要利用的工具。历史显示,如果我们能让消费者购买,他们就会持续购买。这也就是为什么,0至3个月的顾客收到营销人员的沟通信息多于3至6个月的顾客。
(2)、描述
消费的过程是持续变动的。在顾客距上一次购买时间满一个月之后,在数据库里就成为消费为两个月的客户。反之,同一天,消费为3个月前的客户作了其下一次的购买,他就成为消费为一天前的顾客,也就有可能在很短的期间内就收到新的折价信息。
(3)、功能
消费的功能不仅在于提供的促销信息而已,营销人员的消费报告可以监督事业的健全度。优秀的营销人员会定期查看消费分析,以掌握趋势。月报告如果显示上一次购买很近的客户,(消费为1个月)人数如增加,则表示该公司是个稳健成长的公司;反之,如上一次消费为一个月的客户越来越少,则是该公司迈向不健全之路的征兆。
(4)、重要指标
消费报告是维系顾客的一个重要指标。买过你的商品、服务或是曾经光顾你商店的消费者,是最有可能再向你购买东西的顾客。再则,要吸引一个几个月前才上门的顾客购买,比吸引一个一年多以前来过的顾客要容易得多。营销人员如接受这种强有力的营销哲学——与顾客建立长期的关系而不仅是卖东西,会让顾客持续保持往来,并赢得他们的忠诚度。
RFM模型
2、消费频率 (Frequency)
(1)、定义
消费频率是顾客在限定的期间内所购买的次数。我们可以说最常购买的顾客,也是满意度最高的顾客。如果相信品牌及商店忠诚度的话,最常购买的消费者,忠诚度也就最高。增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。
(2)、分类
根据这个指标,我们又把客户分成五等分,这个五等分分析相当于是一个"忠诚度的阶梯"(loyalty ladder),如购买一次的客户为新客户,购买两次的客户为潜力客户,购买三次的客户为老客户,购买四次的客户为成熟客户,购买五次及以上则为忠实客户。其诀窍在于让消费者一直顺着阶梯往上爬,把销售想象成是要将两次购买的顾客往上推成三次购买的顾客,把一次购买者变成两次的。
(3)、数据分析
影响复购的核心因素是商品,因此复购不适合做跨类目比较。比如食品类目和美妆类目:食品是属于"半标品",产品的标品化程度越高,客户背叛的难度就越小,越难形成忠实用户;但是相对美妆,食品又属于易耗品,消耗周期短,购买频率高,相对容易产生重复购买,因此跨类目复购并不具有可比性。
3、消费金额 (Monetary)
消费金额是所有数据库报告的支柱,也可以验证"帕雷托法则"(Pareto's Law)——公司80%的收入来自20%的顾客。它显示出排名前10%的顾客所花费的金额比下一个等级者多出至少2倍,占公司所有营业额的40%以上。如看累计百分比的那一栏,我们会发现有40%的顾客贡献公司总营业额的80%;而有60%的客户占营业额的90%以上。最右的一栏显示每一等分顾客的平均消费,表现最好的 10%的顾客平均花费1195美元,而最差的10%仅有18美元 。
理论上M值和F值是一样的,都带有时间范围,指的是一段时间(通常是1年)内的消费金额,在工作中我认为对于一般店铺的类目而言,产品的价格带都是比较单一的,比如:同一品牌美妆类,价格浮动范围基本在某个特定消费群的可接受范围内,加上单一品类购买频次不高,所以对于一般店铺而言,M值对客户细分的作用相对较弱。
三、RFM模型的用户分类
客户类型与等级 | R | F | M | 客户特征 |
重要价值客户(A级/111) | 高(1) | 高(1) | 高(1) | 最近消费时间近、消费频次和消费金额都很高 |
重要发展客户(A级/101) | 高(1) | 低(0) | 高(1) | 最近消费时间较近、消费金额高,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展 |
重要保持客户(B级/011) | 低(0) | 高(1) | 高(1) | 最近消费时间交远,消费金额和频次都很高。 |
重要挽留客户(B级/001) | 低(0) | 低(0) | 高(1) | 最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当基于挽留措施。 |
一般价值客户(B级/110) | 高(1) | 高(1) | 低(0) | 最近消费时间近,频率高,但消费金额低,需要提高其客单价。 |
一般发展客户(B级/100) | 高(1) | 低(0) | 低(0) | 最近消费时间较近、消费金额,频次都不高。 |
一般保持客户(C级/010) | 低(0) | 高(1) | 低(0) | 最近消费时间较远、消费频次高,但金额不高。 |
一般挽留客户(C级/000) | 低(0) | 低(0) | 低(0) | 都很低 |
根据上表可以看出:
重要价值客户(111):最近消费时间近、消费频次和消费金额都很高,必须是VIP啊!
重要保持客户(011):最近消费时间较远,但消费频次和金额都很高,说明这是个一段时间没来的忠诚客户,我们需要主动和他保持联系。
重要发展客户(101):最近消费时间较近、消费金额高,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展。
重要挽留客户(001):最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当给予挽留措施。
四、RFM模型的应用
作为CRM操盘手,主要有两种方法来分析RFM模型的结果:用基于RFM模型的划分标准来进行客户细分,用基于RFM模型的客户评分来进行客户细分。
1、基于RFM模型进行客户细分
CRM实操时可以选择RFM模型中的1-3个指标进行客户细分,如下表所示。切记细分指标需要在自己可操控的合理范围内,并非越多越好,一旦用户细分群组过多,一来会给自己的营销方案执行带来较大的难度,而来可能会遗漏用户群或者对同个用户造成多次打扰。
最终选择多少个指标有两个参考标准:店铺的客户基数,店铺的商品和客户结构。
店铺的客户基数:在店铺客户一定的情况下选择的维度越多,细分出来每一组的用户越少。对于店铺基数不大(5万以下客户数)的店铺而言,选择1-2个维度进行细分即可。对于客户超过50万的大卖家而言可以选择2-3个指标。
店铺的商品和客户结构:如果在店铺的商品层次比较单一,客单价差异幅度不大的情况下,购买频次(F值)和消费金额(M值)高度相关的情况下,可以只选择比较容易操作的购买频次(F值)代替消费金额(M值)。对于刚刚开店还没形成客户粘性的店铺,则可以放弃购买频次(F值),直接用最后一次消费(R值)或者消费金额(M值)。
2、通过RFM模型评分后输出目标用户
除了直接用RFM模型对用户进行分组之外,还有一种常见的方法是利用RFM模型的三个属性对客户进行打分,通过打分确定每个用户的质量,最终筛选出自己的目标用户。
RFM模型评分主要有三个部分:
(1)、确定RFM三个指标的分段和每个分段的分值;
(2)、计算每个客户RFM三个指标的得分;
(3)、计算每个客户的总得分,并且根据总得分筛选出优质的客户
比如,实操的过程中一般每个指标分为3-5段,其中R值可以根据开店以来的时间和产品的回购周期来判定,F值根据现有店铺的平均购买频次,M值可参考上文客单价的分段指标。
举个例子:
确认RFM的分段和对应分段的分值之后,就可以按照用户情况对应进行打分。
这个时候可能有人会对此产生质疑,我如何验证这个给予的分值就是合理的呢?确实我也暂时没有办法给予和科学研究的回复,如果需要验证的话,每次对用户数据进行导入之后,需要用算法模型进行回归验证。
五、RFM模型的意义
在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。
RFM模型较为动态地层示了一个客户的全部轮廓,这对个性化的沟通和服务提供了依据,同时,如果与该客户打交道的时间足够长,也能够较为精确地判断该客户的长期价值(甚至是终身价值),通过改善三项指标的状况,从而为更多的营销决策提供支持。
在RFM模式中,R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般的分析型CRM着重在对于客户贡献度的分析,RFM则强调以客户的行为来区分客户。
RFM非常适用于生产多种商品的企业,而且这些商品单价相对不高,如消费品、化妆品、小家电、录像带店、超市等;它也适合在一个企业内只有少数耐久商品,但是该商品中有一部分属于消耗品,如复印机、打印机、汽车维修等消耗品;RFM对于加油站、旅行保险、运输、快递、快餐店、KTV、行动电话信用卡、证券公司等也很适合。
RFM可以用来提高客户的交易次数。业界常用的DM(直 接邮寄),常常一次寄发成千上万封邮购清单,其实这是很浪费钱的。根据统计(以一般邮购日用品而言),如果将所有R(Recency)的客户分为五级,最 好的第五级回函率是第四级的三倍,因为这些客户刚完成交易不久,所以会更注意同一公司的产品信息。如果用M(Monetary)来把客户分为五级,最好与 次好的平均回复率,几乎没有显著差异。
有些人会用客户绝对贡献金额来分析客户是否流失,但是绝对金额有时会曲解客户行为。因为每个商品价格可能不同,对不同产品的促销有不同的折扣,所以采用相对的分级(例如R、F、M都各分为五级)来比较消费者在级别区间的变动,则更可以显现出相对行为。企业用R、F的变化,可以推测客户消费的异动状况,根据客户流失的可能性,列出客户,再从M(消费金额)的角度来分析,就可以把重点放在贡献度高且流失机会也高的客户上,重点拜访或联系,以最有效的方式挽回更多的商机。
RFM也不可以用过头,而造成高交易的客户不断收到信函。每一个企业应该设计一个客户接触频率规则,如购买三天或一周内应该发出一个感谢的电话或Email,并主动关心消费者是否有使用方面的问题,一个月后发出使用是否满意的询问,而三个月后则提供交叉销售的建议,并开始注意客户的流失可能性,不断地创造主动接触客户的机会。这样一来,客户再购买的机会也会大幅提高。
企业在推行CRM时,就要根据RFM模型的原理,了解客户差异,并以此为主轴进行企业流程重建,才能创新业绩与利润。否则,将无法在新世纪的市场立足。
总结
优化猩SEO:运营人员利用RFM模型分析能够快速地将用户细分成同类群组,并针对这些用户采取不同的个性化营销策略,从而提高用户的参与度和留存率。
参考链接:
RFM模型
https://baike.baidu.com/item/RFM%E6%A8%A1%E5%9E%8B/7070365
RFM模型
https://wiki.mbalib.com/wiki/RFM%E6%A8%A1%E5%9E%8B
如何使用RFM模型进行用户分层
https://www.51cto.com/article/680150.html
深入解读RFM模型-实战应用干货
https://www.jianshu.com/p/4b60880f24e2
修改于2023-11-29
想了解更多营销百科的内容,请访问:营销百科